Accueil > Coin d’histoire des sciences et des techniques. > Histoire de l’électricité : l’histoire des unités (...)

Histoire de l’électricité : l’histoire des unités électriques.

vendredi 15 mai 2009, par Gérard Borvon

Dans le domaine de l’électricité, l’ampère, le volt, le watt sont d’une telle banalité que chacun, ayant un jour remplacé une ampoule ou un fusible, connaît au moins leur nom. Et ceci, où que cette personne habite sur la planète et quel que soit son niveau d’instruction. A chaque grandeur physique doit en effet être associée une unité. Mais quand, où et comment ces unités ont-elles été définies ?


Voir l’ensemble du dossier sur le site Ampère CRHST/CNRS

La longue histoire des unités électriques

GIF - 142.2 ko
Une date importante : l’exposition internationale d’électricité de 1881 à Paris.

Les unités électriques.

Quand les électriciens font naître un langage universel

A l’occasion de la première exposition internationale d’électricité qui se tient à Paris en 1881, l’initiative est prise d’un "congrès international des électriciens" qui se tiendra pendant l’exposition. Cette réunion n’est pas une simple rencontre amicale. L’un de ses objectifs est de première importance : définir un système international d’unités électriques.

Tout débutant dans l’apprentissage des sciences physiques le sait : à chaque grandeur physique est obligatoirement associée son unité. Dans le domaine de l’électricité, l’ampère, le volt, le watt sont d’une telle banalité que chaque personne qui a, un jour, remplacé une lampe ou un fusible en connaît au moins le nom. Et ceci, où que cette personne habite sur la planète et quel que soit son niveau d’instruction. Mais une question se pose : quand, où, comment, ces unités ont-elles été définies ?

Le système métrique décimal.

L’époque n’est pas si ancienne qui a, d’abord, vu naître le système décimal. Un nom s’impose alors : celui de Lavoisier. Seul, affirme-t-il, un système décimal peut permettre la communication entre chimistes de différentes nationalités et plus généralement entre tous ceux, savants, artisans, marchands et membres de professions dont l’activité implique la mesure. Dans le Traité élémentaire de chimie qu’il publie en 1789 il se livre à un plaidoyer en faveur d’un tel système. Il calcule déjà des tables de conversion et fait fabriquer des balances équipées de boites de masses décimales.

Lavoisier fait partie de la commission chargée par le pouvoir révolutionnaire de mettre au point un modèle décimal de mesures. Il est arrêté et guillotiné avant que ce travail n’aboutisse. Pourtant, le 7 avril 1795 (18 germinal de l’an III) le mètre et le gramme deviennent les unités de mesure républicaines et le système décimal est instauré. Des préfixes grecs, déca, hecto, kilo, sont choisis pour les multiples. Des préfixes latins, déci, centi, milli, pour les sous-multiples. Ce système deviendra, comme l’avait souhaité Lavoisier, un véritable "langage universel".

Mais revenons aux mesures et unités électriques.

Pour mesurer, il faut d’abord définir une grandeur (intensité, tension, etc.) et concevoir un instrument fiable pour la mesurer.

Tout au long du XVIIIe siècle différents appareils, à paille, à fil, à feuille d’or sont construits pour estimer la tension ou la charge électrique. Mais ce sont plutôt des "électroscopes" que des "électromètres" car on ne pouvait pas comparer deux mesures faites avec des instruments différents.

La découverte de la pile électrique en 1800 puis celle de l’électromagnétisme en 1820 permettent enfin d’aborder l’électricité par la mesure. Une quantité d’électricité peut désormais être réellement mesurée, lors d’une électrolyse, par le volume de gaz qui se dégage à l’électrode ou par la masse de métal qui s’y dépose. Plus tard, l’intensité d’un courant pourra être évaluée par son action sur une aiguille aimantée ou sur un autre circuit électrique.

Au cours du XIXe siècle, moteurs, génératrices, systèmes d’éclairage ont pris des dimensions industrielles. Toute cette activité n’a pas pu se développer sans des moyens rigoureux de mesure. Elle exige à présent des normes communes. Des appareils de mesure sont mis au point et dans le même temps des unités sont proposées.

Les initiatives sont d’abord dispersées jusqu’au moment où une harmonisation s’impose.

L’Angleterre en avance

Dans ce domaine, l’Angleterre a largement devancé les autres pays européens. Il existe une "Association britannique pour l’avancement des sciences" qui, depuis 1863, a établi un système d’unités partiellement repris sur le plan international sous la dénomination de "système de l’association britannique" ou système B.A (pour British Association).

Par ce système, les savants britanniques ont la volonté d’inscrire l’électricité au rang d’une science académique. La mécanique est alors le modèle, les unités électriques doivent donc se déduire des trois unités fondamentales de la mécanique : le mètre, le gramme et la seconde. En 1873, sur la proposition de William Thomson (le futur Lord Kelvin), le mètre est remplacé par le centimètre mieux adapté pour la mesure des masses volumiques. Le système est alors connu sous le nom de système CGS.

Relevons ici la clairvoyance et le courage intellectuel des électriciens britanniques qui n’hésitent pas à choisir le centimètre et le gramme, mesures à la fois continentales et révolutionnaires, dans un pays si attaché à ses traditions insulaires.

En 1875 la "Convention du mètre" signée par les diplomates de 17 États donne à ce choix un caractère officiel. Dans le même temps est créée la Convention Générale des Poids et Mesures (CGPM) et le Bureau International des Poids et Mesures (BIPM) dont le siège est fixé au pavillon de Breteuil à Sèvres, près de Paris.

A côté du système CGS, théorique, l’association britannique a défini un système d’unités pratiques dans lequel l’unité de résistance est désignée par le nom d’ohm, l’unité de force électromotrice par celui de volt et celle d’intensité par celui de weber. Hommage rendu à trois savants ayant fait progresser la science électrique. Les trois unités sont liées par la formule I=E/R qui traduit la relation, établie par Ohm, entre la tension aux bornes d’une résistance et l’intensité du courant qui la traverse. Un weber est donc l’intensité du courant qui circule dans une résistance de un ohm sous l’action d’une force électromotrice de un volt.

La France comme l’Allemagne utilisent également la résistance, la tension et l’intensité comme concepts de base. Mais dans ces deux pays les unités sont d’abord considérées comme des étalons adaptés aux travaux des ingénieurs. Le monde des électriciens ne parle pas un langage unique.

Avant 1881 : des systèmes nationaux différents.

Les unités de résistance :

En Angleterre, nous avons déjà relevé le choix, par la société britannique, d’une unité théorique, d’une unité pratique et d’étalons. Quelques précisions à ce sujet :

L’unité théorique : nous avons déjà eu l’occasion d’évoquer, dans le chapitre consacré aux équations de Maxwell, le problème lié à l’existence de deux systèmes théoriques possibles : le système électrostatique et le système électromagnétique. Pour des raisons pratiques liées aux applications industrielles, c’est le système CGS électromagnétique qui est retenu. Dans ce système, la résistance a la dimension d’une vitesse. Son unité théorique est donc le cm/s.

L’unité pratique : la valeur de l’unité C.G.S théorique (le cm/s) correspond à une résistance extrêmement faible. L’Association Britannique a donc choisi une unité pratique plus commode pour la mesure des résistances courantes. Elle correspond à 10 millions de mètres par seconde (109 unités C.G.S). Elle est alors désignée sous le nom d’ohm. On retiendra, à ce sujet, que 10 millions de mètres correspond à la longueur du quart du méridien terrestre, valeur universelle qui est à la base de la définition du mètre.

Les étalons : une fois définie cette unité pratique restait à construire des étalons. Ceux-ci étaient constitués par des résistances métalliques déposées à Londres. Maxwell, qui anime le comité chargé de déterminer ce standard, les décrit comme "faites d’un alliage à 2 parties d’argent et une partie de platine, en forme de fils de 0,5mm à 0,8mm de diamètre et de 1m à 2m de longueur. Ces fils sont soudés à de grosses électrodes de cuivre. Le fil lui-même est couvert de deux couches de soie, noyé dans une masse de paraffine et renfermé dans une boîte de cuivre mince, de façon qu’on puisse le porter aisément à la température pour laquelle sa résistance est exactement de 1 ohm. Cette température est inscrite sur le support isolant".


Résistance étalon du système britannique (James Clerk Maxwell, Traité d’électricité et de magnétisme. trad. 1885. Tome I. p.524)


En France on compte en "kilomètres de résistance". Cette unité, établie par Bréguet à l’intention des télégraphistes, est représentée par la résistance d’un fil de fer télégraphique de quatre millimètres de diamètre et de mille mètres de longueur. Cette unité vaut environ 10 ohms. Des étalons sont construits mais leur valeur dépend fortement du fer utilisé.

En Allemagne on utilise l’unité Siemens, désignée par le symbole US, qui est la résistance d’une colonne de mercure de 1m de longueur et de 1 millimètre carré de section. Sa valeur est estimée à 0,9536 ohm.

Unités de force électromotrice :

L’Unité C.G.S de force électromotrice (qui devrait être le cm3/2.g1/2.s-2) a également une valeur extrêmement faible.

L’Association Britannique choisit donc comme unité pratique de force électromotrice, le volt, qui a une valeur de 108 unités CGS.

Elle est sensiblement représentée par la force électromotrice de la pile Daniell. Rappelons que cette pile, mise au point par Daniell, en 1836, comporte une électrode de cuivre plongeant dans une solution saturée de sulfate de cuivre associée à une électrode de Zinc plongeant dans une solution de sulfate de Zinc. Cette pile "impolarisable" a une f.e.m constante de 1,079 volt. La pile Daniell sert également de référence en France et en Allemagne.

Unités d’intensité :

L’unité pratique d’intensité de l’Association Britannique est le weber. Intensité d’un courant qui traverse une résistance de 1 ohm présentant une force électromotrice de 1 volt entre ses extrémités. Sa valeur est de 0,1 unités CGS (l’unité CGS étant le cm1/2.g1/2.s-1).

Cette unité permet d’écrire de façon commode toute la gamme des intensités de courants utilisées dans l’industrie. Au plus bas de l’échelle : l’intensité des courants téléphoniques qui est de quelques microwebers et celle des courants télégraphiques qui est de quelques milliwebers. A l’autre extrémité les courants débités par les "machines Gramme" qui varient entre vingt et trente webers ou les courants qui alimentent les cuves de galvanoplastie qui peuvent atteindre des valeurs de l’ordre de cent webers.

Les appareils électromagnétiques de mesure des courants qui commencent à se généraliser, sont directement gradués, suivant les usages, en webers ou milliwebers.

Dans la pratique un courant de 1 weber dépose 1,19 gramme de cuivre à l’heure à la cathode d’un électrolyseur à sulfate de cuivre.

En Allemagne, l’unité d’intensité, est celle qui traverse une unité de résistance Siemens reliée aux pôles d’une pile Daniell. Sa valeur est de 1,16 weber.

La France ne présente pas de choix tranché en la matière. Les unités britanniques et allemandes y sont utilisées mais on y utilise aussi le classique "galvanomètre" : un électrolyseur est intercalé dans le circuit et l’intensité du courant est exprimée en cm3 de gaz dégagé par minute aux électrodes d’un électrolyseur à acide sulfurique ou en grammes de cuivre déposés par heure à la cathode d’un électrolyseur à sulfate de cuivre.

A l’évidence, un langage commun s’impose. Ce sera donc l’objectif fixé au premier congrès des électriciens à Paris

1881 : premier congrès international des électriciens, premier système international.

Le congrès se tient sous le patronage de Adolphe Cochery, ministre des Postes, qui souhaite en faire un évènement international d’envergure. Sa présidence est assurée par un chimiste, Jean-Baptiste Dumas.

Les congressistes, au nombre de 250, viennent de 28 pays différents. Des savants et des ingénieurs aussi célèbres que William Thomson (futur Lord Kelvin), Tyndall, Crookes, Helmholtz, Kirchhoff, Siemens, Mach, Gramme, Rowland, Becquerel, Fizeau, Planté, Lord Rayleigh, Lenz se trouvent ainsi pour la première fois ensemble. Un sujet s’impose à tous : celui des unités et étalons électriques.

Une opposition existe entre les "savants" britanniques qui, avec le système CGS, tiennent à inscrire les unités électriques dans le cadre théorique de la mécanique et les "ingénieurs" allemands qui veulent des étalons pratiques.

Le physicien français Eleuthère Mascart, secrétaire du congrès, en rend compte dans un récit qui nous en révèle les coulisses.


« Le Congrès, dit-il, avait constitué une Commission très nombreuse des unités électriques, qui s’est réunie le 16 et le 17 septembre 1881. La première séance a été remplie par une sorte d’exposé de principe sans grand résultat. Dans la seconde, la question a été serrée de plus près ; il s’agissait de savoir si les unités seraient fondées sur un système logique ou si l’on accepterait, en particulier pour la mesure des résistances, l’unité arbitraire dite de Siemens.

La discussion a été pénible et très confuse ; on voyait surgir des propositions et des objections imprévues, surtout de personnes qui ne comprenaient pas la portée des résolutions à prendre. M. Dumas, qui présidait avec un tact et une autorité que j’admirais, interrompit la séance en disant que l’heure paraissait avancée (4 h.30) et qu’on se réunirait ultérieurement. C’était un samedi soir. En sortant, j’accompagnais notre Président, et je lui dis : « Mon cher Maître, il me semble que l’affaire ne marche pas bien. » - « Je suis convaincu, répondit-il, que nous n’aboutirons pas et vous avez compris pourquoi j’ai levé la séance. » Je n’ai pas souvenir de ce que fut ensuite notre conversation.

Le lendemain, dans la matinée, je rencontrai sur le pont de Solférino William Siemens qui me demanda si j’avais reçu la visite de Lord Kelvin (alors sir William Thomson), en ajoutant qu’on m’invitait à dîner et qu’on espérait arriver à une entente. Rentré aussitôt, je trouvai la carte de Lord Kelvin avec ces mots : « Hôtel Chatham, 6 h. 30 ».

Je fus naturellement exact au rendez-vous et je trouvai dans le petit salon d’attente une société imposante : Lord Kelvin, William Siemens pour l’Angleterre, puis von Helmholtz, Clausius, Kirchhoff, Wiedemann et Werner Siemens. La discussion reprit et, après beaucoup d’hésitations, Werner Siemens finit par accepter la solution proposée, à la condition que le système de mesures serait institué « pour la pratique ». Je ne fis aucune difficulté à cette qualification et rédigeai au crayon sur le bord du piano le texte de la convention.

Le système de mesures pour la pratique avait comme bases les unités électromagnétiques C.G.S.

On définissait l’Ohm et le Volt, en laissant à une commission internationale le soin de fixer les dimensions de la colonne de mercure propre à représenter l’Ohm.

Soulagé ainsi d’un grand poids, je dînai de bon appétit et, après la soirée, j’allai en rentrant, à tout hasard, sonner à la porte de M. Dumas, quoiqu’il fût déjà 10 h. 30. Il était au salon au milieu de sa famille et mon premier mot fut : « L’accord est fait sur les unités électriques ». Je n’oublierai jamais l’impression de joie véritable manifestée par M. Dumas à cette nouvelle qu’il était loin d’attendre.

Si le système d’unités a fini par aboutir, on doit l’attribuer d’abord à l’autorité de M. Dumas, dont le grand talent inspirait le respect et empêcha la discussion de s’égarer en paroles trop vives, puis à l’influence sur Werner Siemens de son frère, William Siemens, qui vivait dans le milieu scientifique anglais engagé par l’initiative de l’Association Britannique.

Nous étions impatients de soumettre ces propositions au Congrès dans la séance générale du mardi 20 septembre, mais on avait appris dans l’intervalle, la mort du président Garfield et la séance fut aussitôt levée en signe de deuil. Comme nous n’avions encore que deux unités, l’ohm et le volt, et qu’il était nécessaire de compléter le système, je demandai au président, M. Cochery, si les commissions au moins pouvaient se réunir.

Je dus m’incliner devant sa réponse négative, et nous restâmes, avec Von Helmholtz, auprès de Lord et Lady Kelvin qui, ayant négligé de déjeuner, prenaient un chocolat dans le restaurant Chiboust, installé près de la salle du Congrès. C’est dans ce petit comité, autour d’une vulgaire table en marbre blanc, que furent convenues les trois unités suivantes : Ampère (au lieu de Weber), Coulomb et Farad.

J’étais chargé d’en lire le texte le lendemain 21 septembre en séance générale. Nombre de membres de la commission, qui ne connaissaient que la séance du samedi, en furent bien un peu surpris, mais les commentaires de Lord Kelvin et de Von Helmholtz ne permirent plus aucune hésitation. Le système pratique d’unités était fondé »

Dans le discours qu’il prononça à la fin du congrès, Jean-Baptiste Dumas ne cachait pas sa satisfaction :

" L’accord s’est fait, et, par une décision unanime, vous avez rattaché d’une part les mesures électriques absolues au système métrique en adoptant pour bases le centimètre, la masse du gramme et la seconde ; de l’autre, vous avez institué des unités usuelles, plus voisines des grandeurs qu’on est accoutumé à considérer dans la pratique et vous les avez rattachées par des liens étroits aux unités absolues. Le système est complet."

La naissance de l’ohm, de l’ampère, du coulomb, du farad.

On peut lire le compte rendu de cette séance dans la revue "La Nature" (deuxième semestre, p282) :

"On peut considérer les travaux du Congrès comme terminés à la date du samedi 24 septembre. Il aura suffit de quatre séances plénières, dont trois seulement auront été consacrées à l’étude des questions... pour épuiser son ordre du jour..."

Les conclusions du congrès tiennent en sept points :

1) Le système CGS est adopté.

2) L’unité de résistance sera désignée par le nom de "ohm" avec la valeur de 109 unités CGS. L’unité de force électromotrice, ou de tension, sera le volt avec pour valeur 108 unités CGS.

3) L’unité pratique de résistance (l’ohm) sera constituée par une colonne de mercure d’un millimètre carré de section à la température de zéro degré centigrade.

4) Une commission internationale sera chargée de déterminer la longueur de la colonne de mercure représentant l’ohm.

5) L’unité d’intensité de courant sera nommée "ampère". Intensité d’un courant "produit par un volt dans un ohm".

6) L’unité de quantité d’électricité sera appelée "coulomb" ou quantité de courant "débitée par un courant de un ampère pendant une seconde" (d’après la relation Q=I.t).

7) L’unité de capacité sera le "farad" définie par "la condition qu’un coulomb dans un farad donne un volt" (d’après la relation Q/C=V).

Ampère et Coulomb, citoyens de la puissance invitante, sont mis à l’honneur par l’attribution de leur nom aux unités d’intensité et de charge. Weber en fait les frais mais ... le congrès lui adresse un message de félicitations pour le cinquantième anniversaire de son entrée à l’université de Göttingen. Son nom sera donné ultérieurement à l’unité de flux magnétique.

Cette nouvelle façon d’attribuer aux unités le nom de savants célèbres est soulignée de façon lyrique pas J.B Dumas dans son discours de clôture du congrès.

"L’Association britannique avait eu l’heureuse idée de désigner ces diverses unités par les noms des savants auxquels nous devons les principales découvertes qui ont donné naissance à l’électricité moderne ; vous l’avez suivie dans cette voie, et désormais les noms de Coulomb, de Volta, d’Ampère, de Ohm et de Faraday demeureront étroitement liés aux applications journalières des doctrines dont ils furent les heureux créateurs. L’industrie, en apprenant à répéter chaque jour ces noms dignes de la vénération des siècles, rendra témoignage de la reconnaissance due par l’humanité tout entière à ces grands esprits... "

Une mode nouvelle est née : celle de la "vulgarisation" scientifique qui s’exprime dans les musées, les expositions internationales, les revues superbement illustrées, en particulier celles relatives à l’électricité : L’Electricité (1876), La Lumière électrique (1879), L’Electricien (1881). Le savant est devenu un personnage qu’il est bon de "populariser".

Le choix de donner aux unités le nom de célébrités scientifiques ne fait cependant pas l’unanimité. A l’occasion du congrès de 1889, Marcelin Berthelot le regrette. "Poncelet, Ampère, Watt, Volta, Ohm, sont maintenant des racines de noms dont la plupart n’ont pas de rapport nécessaire et immédiat avec les hommes qui les ont illustrés". "Le contraste est bien remarquable, ajoute-t-il, avec l’allure essentiellement impersonnelle qu’avait la nomenclature scientifique, il y a seulement quatre vingt ans". D’ailleurs prévoit-il "Il est bien à craindre que le siècle prochain, par la force même de la marche en avant et des modifications des sciences, ne supprime cette terminologie".

Pourtant les noms de Kelvin, de Hertz, de Siemens, de Tesla, de Henry et de bien d’autres, viendront, dans les décennies qui suivront, s’ajouter à la liste des unités. Le nom de Ampère figurant même dans la liste des quatre unités fondamentales de notre actuel Système International.

Les suites du congrès de 1881 : le joule, le watt...

En 1882 l’Association Britannique propose des unités d’énergie et de puissance électriques. Le système C.G.S comporte déjà une unité de travail, l’erg, (1erg = 981 g.cm2.s-1) déduite d"une unité de force, la dyne, (1dyne = 981 g.cm.s-2) et une unité de puissance : l’erg/s.

Pour l’unité pratique d’énergie elle suggère d’appeler joule le "volt-coulomb" qu’elle utilisait précédemment.

Les électriciens britanniques considèrent Joule (1818-1889) comme l’un des leurs. Ses premiers travaux scientifiques en 1838 portent sur le magnétisme et, à peine âgé de 21 ans il découvre la "saturation magnétique", c’est-à-dire la valeur limite atteinte par l’aimantation d’un noyau d’acier excité par un champ magnétique. En 1842, il découvre la loi qui porte son nom et qui établit la relation entre l’énergie calorifique, W, dégagée pendant un temps donné, t, par une résistance, R, parcourue par un courant d’intensité I. Loi que nous écrivons : W = R.I2.t. Il n’a encore que 24 ans et se consacrera bientôt à établir la relation traduisant la transformation directe du travail mécanique en chaleur.

Pour la puissance, l’Association propose le watt à la place du "volt-ampère". Ce faisant, elle empiète sur le territoire des "mécaniciens" dont Watt est l’un des éminents représentants.

La conversion avec les unités de travail et de puissance utilisées par les mécaniciens donne alors :

1 kilogrammètre = 9,81 joules

1 cheval-vapeur = 736 watts

En 1884 la "conférence internationale pour la détermination des unités électriques" se réunit à Paris après une première conférence en 1882. Elle fixe la valeur de l’ohm : résistance d’une colonne de mercure de 1 millimètre carré de section et de 106 cm de longueur à la température de la glace fondante. Des étalons seront construits.

L’ampère est défini comme le courant dont la valeur absolue est 0,1 unité électromagnétique CGS.

Le volt est la force électromotrice qui "soutient" un courant de un ampère dans un conducteur dont la résistance est l’ohm légal.

En 1889, le congrès international des électriciens revient à Paris à l’occasion de l’exposition internationale. Le joule et le watt sont confirmés comme unités d’énergie et de puissance. Le kilowatt est retenu à la place du cheval-vapeur pour la mesure de la puissance des moteurs électriques.

De façon quelque peu provocatrice, le congrès des électriciens invite le congrès des mécaniciens qui se tient dans la même période à renoncer au cheval-vapeur, à adopter le système CGS et à clarifier les notions de "force" et de "travail" trop souvent utilisées l’une pour l’autre dans les textes des mécaniciens.

Des mécaniciens dépassés :

Les mécaniciens acceptent de clarifier les notions de force et de travail et décident que :

- Le mot force ne sera plus utilisé désormais que comme synonyme d’effort.

- Le mot travail désignera le produit d’une force par le chemin que décrit son point d’application dans sa propre direction.

- Le mot puissance sera exclusivement employé pour désigner le quotient d’un travail par le temps employé à le produire.

En revanche, ils ne renonceront pas à leurs unités propres, aussi archaïques puissent-elles paraître à leurs confrères électriciens :

- L’unité de force reste le kilogramme-force (poids, à Paris, d’une masse de un kilogramme).

- L’unité de travail est le kilogrammètre (travail d’une force de 1 kilogramme-force qui déplace son point d’application de 1 mètre dans sa direction).

- L’unité de puissance est, au gré de chacun : le cheval-vapeur de 75 kilogrammètres par seconde et le poncelet de 100 kilogrammètres par seconde.

Le mot énergie subsiste alors dans le langage comme une généralisation fort utile comprenant les différentes formes équivalentes : travail, force vive, chaleur... Il n’existe pas d’unité spéciale pour l’énergie envisagée dans toute sa généralité : on l’évalue numériquement suivant les circonstances, au moyen du joule, du kilogrammètre, de la calorie, etc.

L’obstination des mécaniciens vaudra aux lycéens de continuer à apprendre, jusqu’aux années 1960, que la force s’exprime en kilogramme-force (kgf), le poids en kilogramme-poids (kgp), le travail en kilogrammètres, la puissance mécanique en cheval-vapeur.

En 1893, se tient à Chicago un congrès des électriciens qui est présenté comme le second congrès "officiel" après celui de 1881. Les gouvernements des pays participants y sont représentés et les décisions auront force de loi internationale. Les unités déjà choisies y sont confirmées et précisées.

- L’ohm international sera défini de façon pratique par une colonne de mercure de 1 millimètre carré de section, de 106,3 cm de longueur et d’une masse de 14,4521 gramme.

- L’ampère international sera le courant qui déposera 0,00118 gramme d’argent par seconde à la cathode d’un électrolyseur à nitrate d’argent.

- Le volt international sera la force électromotrice correspondant aux 1000/1434 de celle de la pile Clark, une pile à dépolarisant qui, à cette époque, a détrôné le pile Daniell.

- Le joule et le watt sont confirmés.

La puissance invitante n’est pas oubliée : le henry est reconnu comme unité internationale de mesure de l’inductance magnétique d’un circuit électrique.

Vers le système M.K.S.A

Les électriciens britanniques, et en particulier Maxwell, ressentent, dès les années 1860, la nécessité de compléter le système CGS par une unité spécifique à l’électricité comme l’unité de charge électrique ou celle d’intensité d’un courant.

Nous avons déjà noté que deux systèmes concurrents, l’un issu de l’électrostatique et de la loi de Coulomb, l’autre de l’électromagnétisme et de la loi de Laplace, donnent des dimensions différentes pour les unités.

Dans le système électromagnétique, par exemple, la résistance a la dimension d’une vitesse (elle s’exprime par le quotient d’une longueur L par un temps T). Dans le système électrostatique elle a celle de l’inverse d’une vitesse (quotient d’un temps T par une longueur L).

De même toutes les unités de charge (quantité), d’intensité (courant), de tension (potentiel), de capacité... ont des dimensions différentes dans les deux systèmes. On note également que le rapport entre les dimensions des grandeurs électriques dans chacun des systèmes fait intervenir la dimension d’une vitesse v, remarque dont nous avons souligné l’importance dans la théorie de Maxwell.



Tableau établissant les dimensions des unités dans les deux systèmes électrostatique et électromagnétique (Maxwell, traité d’électricité et de magnétisme)


Le système C.G.S ayant été construit exclusivement à partir du système électromagnétique était mal adapté à l’électrostatique.

En 1901 l’ingénieur électricien italien Giovanni Giorgi propose une solution qui vise à concilier ces deux systèmes et qui aboutit au choix de l’ampère comme unité électrique de base, du mètre comme unité de longueur, de la seconde comme unité de temps. Pour les masses, même si le préfixe "kilo" est inadapté pour désigner une unité, c’est le kilogramme qui est choisi (encore une cicatrice héritée du passé vivant des sciences).

Ce système prend alors le nom de système Giorgi ou système MKSA. En 1906 est créée la Commission Electrotechnique Internationale (C.E.I) dont l’une des missions est de normaliser le système de mesures destinées à l’électricité industrielle. Il faut, cependant, attendre 1946 pour que le système MKSA soit retenu par le Comité International des Poids et Mesures.

En 1948 la Conférence Générale des Poids et Mesures propose le newton comme unité de forces (force capable de procurer à une masse de 1kg une accélération de 1m/s2). Les unités mécaniques et électriques sont enfin unifiées.

Le joule qui était jusqu’alors défini comme l’énergie dégagée pendant une seconde par un courant de un ampère traversant une résistance de un ohm devient également le travail d’une force de un newton déplaçant son point d’application de un mètre dans sa direction.

Le système MKSA prend alors le nom de système international (S.I), adopté par la 11e Conférence Générale des Poids et Mesures (CGPM) en 1960. Le 3 mai 1961 la République française publie le décret n° 61-501 rendant légal le système S.I en France.

Victoire définitive du système des électriciens sur celui des mécaniciens. Professeurs et lycéens peuvent désormais oublier kilogramme-force, kilogrammètre et cheval-vapeur au profit des newton, joule et watt.


Sources consultables sur internet.

La Nature :

1881-I. p98 : L’exposition internationale d’électricité.

1881-II. p263 : Le congrès international des électriciens.

1881-II. p282 : suite

1881 - II. p302 : suite, voeux et résolutions.

1881 - II. p318 : suite, voeux et résolutions.

1882-II. p14 :Exposition internationale d’électricité à Londres.

1882-II. p 334 : Comité international des poids et mesures.

1884-I. p 56. L’exposition d’électricité de Vienne de 1883.

1885-I. p30 : Unités électriques, le watt et le joule.

1885-II. p3 : L’ohm légal.

1889-I. p75 : Le congrès international des électriciens.

1889 -II. p 246 : Le congrès international des électriciens, suite.

1889-II. p 286 : Le congrès international de mécanique appliquée.

1893-II. p 306 : Le congrès international des électriciens de Chicago.


Article traduit :

History of the electrical units.

Historien om de elektriske enhetene.


On peut trouver un développement de cet article dans un ouvrage paru en septembre 2009 chez Vuibert : "Une histoire de l’électricité, de l’ambre à l’électron"

JPEG

Voici un ouvrage à mettre entre toutes les mains, celles de nos élèves dès les
classes de premières S et STI de nos lycées, et entre les mains de tous les futurs enseignants
de sciences physiques et de physique appliquée (tant qu’il en reste encore !).

L’auteur est un
collègue professeur de sciences physiques, formé à l’histoire des sciences, et formateur des enseignants
en sciences dans l’académie de rennes. Bref quelqu’un qui a réfléchi tant à l’histoire de sa
discipline qu’à son enseignement et sa didactique, et cela se sent. Le style est fluide et imagé, bref
plaisant au possible...

...voici donc un bon ouvrage permettant de se construire une culture scientifique sans l’âpreté
des équations de la physique.

extrait du commentaire paru dans le Bulletin de l’Union des Physiciens.


On peut lire du même auteur :

Histoire de l’oxygène. De l’alchimie à la chimie.

Suivre le parcours de l’oxygène depuis les grimoires des alchimistes jusqu’aux laboratoires des chimistes, avant qu’il n’investisse notre environnement quotidien.

Aujourd’hui, les formules chimiques O2, H2O, CO2,… se sont échappées des traités de chimie et des livres scolaires pour se mêler au vocabulaire de notre quotidien. Parmi eux, l’oxygène, à la fois symbole de vie et nouvel élixir de jouvence, a résolument quitté les laboratoires des chimistes pour devenir source d’inspiration poétique, picturale, musicale et objet de nouveaux mythes.

À travers cette histoire de l’oxygène, foisonnante de récits qui se côtoient, s’opposent et se mêlent, l’auteur présente une chimie avant les formules et les équations, et montre qu’elle n’est pas seulement affaire de laboratoires et d’industrie, mais élément à part entière de la culture humaine.


Portfolio